Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We consider the problem of making expressive, interactive static analyzerscompositional. Such a technique could help bring the power of server-based static analyses to integrated development environments (IDEs), updating their results live as the code is modified. Compositionality is key for this scenario, as it enables reuse of already-computed analysis results for unmodified code. Previous techniques for interactive static analysis either lack compositionality, cannot express arbitrary abstract domains, or are not from-scratch consistent. We present demanded summarization, the first algorithm for incremental compositional analysis in arbitrary abstract domains that guarantees from-scratch consistency. Our approach analyzes individual procedures using a recent technique for demanded analysis, computing summaries on demand for procedure calls. A dynamically updated summary dependency graph enables precise result invalidation after program edits, and the algorithm is carefully designed to guarantee from-scratch-consistent results after edits, even in the presence of recursion and in arbitrary abstract domains. We formalize our technique and prove soundness, termination, and from-scratch consistency. An experimental evaluation of a prototype implementation on synthetic and real-world program edits provides evidence for the feasibility of this theoretical framework, showing potential for major performance benefits over non-demanded compositional analyses.more » « less
-
When asked, large language models (LLMs) like ChatGPT claim that they can assist with relevance judgments but it is not clear whether automated judgments can reliably be used in evaluations of retrieval systems. In this perspectives paper, we discuss possible ways for LLMs to support relevance judgments along with concerns and issues that arise. We devise a human–machine collaboration spectrum that allows to categorize different relevance judgment strategies, based on how much humans rely on machines. For the extreme point of ‘fully automated judgments’, we further include a pilot experiment on whether LLM-based relevance judgments corre- late with judgments from trained human assessors. We conclude the paper by providing opposing perspectives for and against the use of LLMs for automatic relevance judgments, and a compromise per- spective, informed by our analyses of the literature, our preliminary experimental evidence, and our experience as IR researchersmore » « less
-
We consider the problem of making expressive static analyzers interactive. Formal static analysis is seeing increasingly widespread adoption as a tool for verification and bug-finding, but even with powerful cloud infrastructure it can take minutes or hours to get batch analysis results after a code change. While existing techniques offer some demand-driven or incremental aspects for certain classes of analysis, the fundamental challenge we tackle is doing both for arbitrary abstract interpreters. Our technique, demanded abstract interpretation, lifts program syntax and analysis state to a dynamically evolving graph structure, in which program edits, client-issued queries, and evaluation of abstract semantics are all treated uniformly. The key difficulty addressed by our approach is the application of general incremental computation techniques to the complex, cyclic dependency structure induced by abstract interpretation of loops with widening operators. We prove that desirable abstract interpretation meta-properties, including soundness and termination, are preserved in our approach, and that demanded analysis results are equal to those computed by a batch abstract interpretation. Experimental results suggest promise for a prototype demanded abstract interpretation framework: by combining incremental and demand-driven techniques, our framework consistently delivers analysis results at interactive speeds, answering 95% of queries within 1.2 seconds.more » « less
-
This report documents the program and the outcomes of Dagstuhl Seminar 23031 Frontiers of Information Access Experimentation for Research and Education, which brought together 38 participants from 12 countries. The seminar addressed technology-enhanced information access (information retrieval, recommender systems, natural language processing) and specifically focused on developing more responsible experimental practices leading to more valid results, both for research as well as for scientific education. The seminar featured a series of long and short talks delivered by participants, who helped in setting a common ground and in letting emerge topics of interest to be explored as the main output of the seminar. This led to the definition of five groups which investigated challenges, opportunities, and next steps in the following areas:reality check, i.e. conducting real-world studies, human-machine-collaborative relevance judgment frameworks, overcoming methodological challenges in information retrieval and recommender systems through awareness and education, results-blind reviewing, and guidance for authors. Date:15--20 January 2023. Website:https://www.dagstuhl.de/23031.more » « less
An official website of the United States government

Full Text Available